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Overview 

 

 

Energy Storage in Chemical Bonds: 

       

 

Hydrogen Storage in Metal Organic Frameworks 

       

 Electrocatalytic reduction of oxygen on platinum alloys and nanostructures 

 Electrocatalytic reduction of nitrogen on molybdenum nitride 
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Electrocatalysis  

Oxygen Reduction on Platinum Alloys 
and Platinum Nanotubes  
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Fuel cells have a potential for highly efficient use of chemical fuels, compared to 
heat engines  

Introduction  

Figure: hydrogen/oxygen fuel cell 
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significant cathode overpotential decreases the 
fuel cell electrical efficiency: 
 
overpotential of 500-600 meV - efficiency of 45-55 % 
compared to the theoretical thermodynamic efficiency of 93 % 
at 25 ̊C.  

Figure: Cyclic voltammograms and polarization curve of ORR on 
Pt3Fe 

 slow kinetics of the oxygen reduction reaction (ORR) in acidic environment 

Introduction  
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 Reducing the ORR overpotential / cost: 

(1) alloying platinum with platinum 
group metals 

 

 

 

(2)  nanostructures: nanotubes and 
nanoparticles  

 
 
 
 
 

 
 
 
 
 Figure: Pt3Ni(111) surface Figure: (6,6)@(13,13) MWPtNT nanotube and 2nm 

Pt201 cluster 

Motivation  
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  study the influence of alloying  component concentration and 
distribution on the ORR activity and stability in aqueous 
environment  

   study the effect of size and structure of a nanomaterial on the ORR 
activity and stability in aqueous environment  

Motivation  
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Reactions connecting different states of the metal surface(*) in the ORR mechanism 

Methodology - study of ORR mechanism 

Free gibbs energy of the reactions 

 relative to the standard 
hydrogen electrode 

e-+H+(aq) = 1/2H2(g) 

 bias effect correction for the free 
energy of H+ 
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Technical details 

 VASP program 

 DFT with PAW method using GGA approximation with PW91, PBE and RPBE 
exchange-correlation terms 

  
  3 layer                   (111) slab with 13.5 Å vacuum layer 
 effect of solvent – bilayer of water molecules on the surface 
  4 x 4 x 1 k-point Monkhorst-Pack mesh 
 plane-wave basis with a cutoff energy of 400 eV 
 Methfessel-Paxton smearing of order 2 with sigma value of 0.2 eV 

3232 ×
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OH* + O* + H* - 

e- + H+ 2(e- + H+)  e- + H+ 

ΔEw,water 0.45 eV 1.43 eV -0.38 eV 

ΔGw,water 0.80 eV 1.48 eV -0.14 eV 

Uf 0.8 V 0.74 V 0.14 V 

ΔEw,water 0.74 eV 2.04 eV -0.16 eV 

ΔGw,water 1.09 eV 2.09 eV 0.08 eV 

Uf 1.1 V 1.40 V -0.08 V 

ΔEw,water 0.97 eV 2.34 eV -0.01 eV 

ΔGw,water 1.32 eV 2.39 eV 0.23 eV 

Uf 1.32 V 1.20 V -0.23 V 

ΔEw,water 1.05 eV 2.43 eV 0.10 eV 

ΔGw,water 1.40 eV 2.48 eV 0.34 eV 

Uf 1.4 V 1.24 V -0.34 V 

Table: The binding Enthalpies and Free energy changes at U=0 V and pH=0 for different 
absorbents with water on Pt surfaces with different concentration of Ni in a second layer (1/3 
coverage ) 

Pt(111) 

Pt3Ni(111)seg 

PtNi(111)seg 

PtNi3(111) seg 

Oxygen Reduction Reaction: Energetics  
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(1) 

(2) 

(3) 

Figure: Free-energy diagrams for ORR over Pt(111) surfaces with different Ni concentration in the second 
layer, for cell potentials U=0.80 V and U=1.23 V 

Oxygen Reduction Reaction: Free energy diagrams  
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(1) 

(2) 

(3) 

Oxygen Reduction Reaction: Free energy diagrams  

estimated catalytic activity: 

confirmed experimentally: 
Y. Liu et al, J. Phys. Chem. C, 116, 7848 (2012) 
M. Karpenter, JACS, 134, 8535 (2012)   

 550 >  240   >  190    > 150 mV  
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 more susceptible to poisoning 
of the surface by the formation of 
nickel oxide 

Slide 13 

Stability of the surfaces 

Estimate of the shift in the electrochemical dissolution potential 

PtNi3 

Table: surface cohesive energy and the estimate of the shift in the 
electrochemical  dissolution potential relative to Pt(111) 

 more susceptible to electrochemical 
dissolution of Pt monolayer 

I. Matanovic et al. J. Phys. Chem. C, 115, 10640 (2011) 
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Pt nanotubes 

PtNT: Rolling-up Pt(111) sheet to form a tube 

mbnaR +=

ac = 3.70- 3.85  Å  

nmmnar c −+= 22

4
2
π

 rolling vector: 
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Pt nanotubes 
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Pourbaix diagrams 

Figure: Calculated surface Pourbaix diagrams for Pt nanotubes compared to a bulk Pourbaix 
diagrams (black dashed lines) 
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Dissociative oxygen reduction reaction (ORR) mechanism 

Figure: Free-energy diagrams for ORR over Pt(111) 
surfaces and SWPtNT for cell potentials U=0.80 V  

PtNTs, d ~ 1nm  

smaller ORR overpotential than 
Pt(111), up to 100 meV 
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Pt nanotubes – ab initio MD simulations in water  

 Aim (1) characterize change of atomic and electronic structure on solvation  
          (2) structure of water around curved surfaces - water-surface interface models 

~800 atom cell, 1300 MD steps 
in 24h, 480 processors, average 
~1min/step 

(6,6) and                                   (13,13) SWPtNT in water 
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The ORR overpotential was found to decrease : 

 shifts in the electrochemical dissolution potentials relative to Pt indicate that 
PtNi is the least susceptible to corrosion 

 

 catalytic activity – modification in the electronic structure  induced by the specific 
subsurface composition  

I. Matanovic et al. J. Phys. Chem. C, 115, 10640 (2011) 
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 ~0.5 nm nanotubes bind oxygen/hydroxyl more strongly than Pt(111)  

  ~1 nm nanotubes bind oxygen/hydroxyl comparable or weaker than Pt(111) 

  reduced ORR overpotential – SWPtNT with a diameter > 1nm  

 control size/chirality – fine tuning of reactivity  → separation of metal nanotubes 
by geometric specification or size 

 all studied nanotubes more susceptible to electrochemical dissolution than 
Pt(111) – potential corrosion problem  

 
 
 

Slide 20 

Conclusions  

  

I. Matanovic et al. J. Phys. Chem. C, 116, 16499 (2012) 

I. Matanovic et al, J. Electrochem. Soc, submitted 
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Electrocatalysis 

Nitrogen Reduction on Molybdenum Nitride 
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Electro-reduction of nitrogen    

 ammonia can be obtained by electro-reduction of nitrogen 

                                        N2 + 6e- + 6H+ → 2NH3 

  protons are supplied from electro-oxidation of hydrogen or water  

 

 challenges: development, characterization and optimization of new 
electrocatalyists for ammonia electrosythesis and stable anhydrous proton 
conducting electrolytes 

                                  

Marnellos et al. Science 282 (5386) 98-100 

Holbrook and Ganley, US patent 7811442 (2010): 
electrochemical synthesis of ammonia using high temperature proton 
conductors at atmospheric pressures 
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Introduction   

Mo2N – high surface area films synthesized at LANL (polymer assisted deposition)  
             

 early transition metal nitrides - possible replacements for platinum-group metal 
catalysts  
 demonstrated catalytic activity for isomerisation, dehydrogenation, hydrogenation, 
water gas shift and amination reactions with competitive rates  

 Figure: Field emission scanning electron microscope (FESEM) images  
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Synergy of Inelastic Neutron Scattering and Computation: 
Ammonia synthesis on novel material  

INS Experiments 
observe frequencies for 
intermediates 

Computational Studies 
calculate frequencies for  
intermediates 

 

extract maximum amount of 
information from experiment: 
 
Identities of intermediates,  
reaction path ? 

 

determine model of surface 
active sites (e.g. defects) 
intermediates 
reaction path 
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 most useful for measurements requiring high sensitivity; for example, very 
dilute systems or molecules adsorbed on surfaces such as in catalysts 

Inelastic neutron scattering experiment   

The Filter Difference Spectrometer (FDS) at LANL  

 used for molecular vibrational spectroscopy by inelastic neutron scattering 
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vibrational spectra measured on FDS   

10 K 

600 K 

973 K 

Figure: INS spectra of reactive species on MoN 

 < 1g sample of catalyst 
adsorb in-situ H2, then add N2 
 
 heat stepwise to increasing T 
 
 collect INS spectrum at each 
step 
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Ammonia synthesis on novel MoN material 

 model the surface 

 model the reaction on the surface – identify the intermediates 

 model the INS spectra – compare with the experiment 
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different surfaces – very different reactivity: (001) does NOT adsorb H2,  (101) and 
(111) + defects dissociates H2 

molecular chemisorption (Kubas dihydrogen complex) 

d(Mo-H2) = 1.86 Å  
d(H-H) = 0.85 Å (activated H-H bond) 
 

reactivity of γ-Mo2N towards hydrogen  
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reactivity of γ-Mo2N towards hydrogen  
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 intensities calculated from DFT vibrational frequencies ωk and amplitudes Ck 
incoherent cross section for atom i 

momentum transfer 
experimental value: Q = k – k0  mean-square amplitude for atom i 
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reactivity of γ-Mo2N towards hydrogen  
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10 K 

600 K 

973 K 

INS spectra assignment  

Figure: INS spectra of reactive species on MoN 

(10 K ) fcc H: 950, 1250 cm-1 
            bridging H: ~ 600, ~800, 1140 cm-1  
            terminal H:  ~700, 1645 cm-1         
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reactivity of γ-Mo2N: adsorption energies   

 DFT calculations used to estimate the free energy of each elementary step in ammonia 
sythesis 

STEEG ∆+∆+∆=∆ ZPE
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reactivity of γ-Mo2N: energetics  

associative mechanism dissociative mechanism 
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INS spectra: (111) perfect surface  

 (111) perfect surface   (111) surface with defects  



  

 

Operated by Los Alamos National Security, LLC for the U.S. Department of Energy’s NNSA 

U N C L A S S I F I E D Slide 35 

10 K 

600 K 

973 K 

assignment  

Figure: INS spectra of reactive species on MoN 

 
(973 K) NNHx species gone; mainly NHx species left.  
             ammonia phonon DOS states below 400 cm-1 
             Mo-(NH3) complex, incl. (NH3) torsion at 120 cm-1 !! 
             Peaks at ~ 600, 800, 900, 1150 and 1475 cm-1 
 

(298 K) Similar to (10 K), but fewer H species,  
             new peaks at ~500, 700 and 1550cm-1:  NNH 

(600 K) H species gone; peaks at 425, 510, 600, 660, 725, 
             1070, (weak: 1240, 1550), 1900 cm-1:  
             mainly NNH and NNH2;   
             plus more strong peaks below 400 cm-1: 

(10 K ) fcc H: 950, 1250 cm-1 
            bridging H: ~ 600, ~800, 1140 cm-1  
            terminal H:  ~700, 1645 cm-1         
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 different surfaces have very different reactivity towards N2, H2 and NNHx, NHx 
species  

 active sites: (111) defect sites with under-coordinated Mo 

 we have investigated the catalytic mechanism and the active sites of newly 
synthesized material using inelastic scattering of neutrons and  DFT calculations 

 synthesis of ammonia proceeds through the formation of both NNHx and NHx 
species  
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Gas Storage: 

Quantum dynamics of hydrogen inside metal-
organic frameworks 
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Introduction 

Metal organic frameworks (MOFs) - inorganic units connected with organic linkers 

 
 

  

building blocks unit cell 
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MOF -5 - close to the U.S. DOE requriements for on board hydrogen storage 
 7.1 wt % but at 40 bar and 77K 

applications: gas storage and separation (H2, CH4, CO2), catalysis 

Zn4O(1,4-benzenedicarboxylate)3 

Introduction 
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understanding the INS spectra of H2 in MOF-5  
 
 
 
 
 
 
 

Motivation 

⇒ design of materials with targeted properties, for instance stronger 
binding energies of H2 

 wealth of information about excitations of translational and rotational motion 
of hydrogen  -  interactions of the guest molecule with the host 

provide valuable insights in exploring the properties of these systems  at the 
molecular level - understanding guest-host interactions  
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calculation of the INS spectra  
 

 
 It is essential to have:  
 
i) quantitative description of the molecule-system potential  
 
ii) the methodology for accurate calculation of the various spectroscopic 
observable   
 

a computer code for coupled quantum calculations of the translational-
rotational energy levels and wave functions of a polyatomic molecule which 
is confined in (or bounded to) a much heavier entity 

 

Motivation 
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Coupled translational rotational problem  

5D T-R Hamiltonian: 

I. Matanović et al., J Chem. Phys. 131, 224308 (2009) 

Basis in the angular coordinates – modified spherical harmonics 
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5D T-R Hamiltonian: 

Basis in the x,y,z coordinates – contraction scheme 

I. Matanović et al., J Chem. Phys. 131, 224308 (2009) 

Coupled translational rotational problem  
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 ab initio 
MP2/def2-TZVP level 

MOF-5: potential 

 analytical form 

J. L. Belof, A. C. Stern and B. Space, J. Phys. 
Chem. C. 2009, 113, 9116. 

K. Sillar, A. Hofmann, J. Sauer, JACS 2009, 
131, 4143 

 

polLJES VVVV ++=

http://pubs.acs.org/action/showImage?doi=10.1021/ja8099079&iName=master.img-001.jpg&type=master�
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 four binding sites: 4 α-, 4 β-, 12 γ-sites per Zn4O unit  

MOF-5: binding energies 

analytical 
PES 

ab initio 
PES 

α - site:  -66.6 meV  -82.9 meV 

γ - site: -65.5 meV -53.9 meV 

β - site: -53.8 meV -47.7 meV 

δ - site: -37.8 meV -52.9 meV 

site-  site-  sitesite δβγα >>−>>−exp: 
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α - site 

 MOF-5: rotational potential 

γ - site 

H2-OMOF5 distance: 3.7 Å H2-OMOF5 distance: 3.6 Å 

H2-ZnMOF5 distance: 3.9 Å H2-ZnMOF5 distance: 4.1 Å 

  analytical PES  ab initio PES 
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MOF-5: translational-rotational potential  

Figure. 3D isosurfaces at -62, -56 and -44 meV for the 
5D analytical PES of H2 in MOF-5 

Figure. 2D cut through the potential connecting α- and 
one of the γ-sites, isosurfaces shown at every 6 meV 
starting from -62 meV 

 analytical PES 
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INS spectra: Translation-rotational problem 

 

1 H2 moving in α- and 
γ- sites 

1 H2 moving in α-site 
with γ-sites occupied 

translational 

pure rotational and 
translational 

rotational 
tranlation- 
rotational 

torsional 
mode of 
linkers 



  

 

Operated by Los Alamos National Security, LLC for the U.S. Department of Energy’s NNSA 

U N C L A S S I F I E D 

Slide 49 

Conclusions 

 small barrier  between α- and three surrounding γ-sites in MOF-5 on analytical PES by 
Belof et al. 
  low-lying translationally excited states extensively delocalized  
 
 comparison with INS spectra implies that the actual degree of localization in the α-site is 
greater than indicated by the PES  
 
 INS spectra assigned, intensities needed for more extensive assignment – M. Xu et al 
Phys. Rev. B 84, 195445(2011) 
 
  PESs that accounts for bulk properties (adsorption isotherms) might not correctly describe 
the interactions with the host on the molecular level – further improvements needed to obtain 
spectroscopic observables 
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water layer 1 

2/3 coverage 

water layer 2 

2/3 coverage 

OH + water 

1/3 coverage  

O + water 

1/3 coverage 

H + water 

1/3 coverage 

Different states of the metal surface 
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translation- rotation problem 

n ΔE/ meV type of excitation 

0 0.0 

1 5.3 (2) translational 

3 5.6 translational 

4 6.9 (2) translational 

6 7.5 translational 

7 9.6 (2) translational 

9 9.9 translational 

10 11.5(2) translational 

11 12.5 (3) translational 

16 12.91 rotational, j=1 

17 12.94 rotational, j=1 

35 16.7 rotational, j=1 

lower three translational excitations 

 rotational problem in 
separate wells 

 translation - rotational problem 
(ZPE=218 cm-1 / 2.6 kJ mol-1 )  

n alpha  
/meV 

gamma 
/meV 

0 0.0 0.0 

1 10.8 7.5 

2 13.3 20.2 

3 22.6 21.1 

4 40.1 42.0 

5 40.1 42.4 

6 46.8 43.2 

7 48.6 52.3 

8 51.9 52.3 
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Overview





Energy Storage in Chemical Bonds:

      



Hydrogen Storage in Metal Organic Frameworks

      

 Electrocatalytic reduction of oxygen on platinum alloys and nanostructures

 Electrocatalytic reduction of nitrogen on molybdenum nitride
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Electrocatalysis 

Oxygen Reduction on Platinum Alloys and Platinum Nanotubes 
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Fuel cells have a potential for highly efficient use of chemical fuels, compared to heat engines 

Introduction 

Figure: hydrogen/oxygen fuel cell
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significant cathode overpotential decreases the fuel cell electrical efficiency:



overpotential of 500-600 meV - efficiency of 45-55 % compared to the theoretical thermodynamic efficiency of 93 % at 25 ̊C. 

Figure: Cyclic voltammograms and polarization curve of ORR on Pt3Fe

 slow kinetics of the oxygen reduction reaction (ORR) in acidic environment







Introduction 
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 Reducing the ORR overpotential / cost:

(1) alloying platinum with platinum group metals







(2)  nanostructures: nanotubes and nanoparticles 





















Figure: Pt3Ni(111) surface

Figure: (6,6)@(13,13) MWPtNT nanotube and 2nm Pt201 cluster



Motivation 
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  study the influence of alloying  component concentration and distribution on the ORR activity and stability in aqueous environment 

   study the effect of size and structure of a nanomaterial on the ORR activity and stability in aqueous environment 

Motivation 
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Reactions connecting different states of the metal surface(*) in the ORR mechanism

Methodology - study of ORR mechanism

Free gibbs energy of the reactions



relative to the standard hydrogen electrode

e-+H+(aq) = 1/2H2(g)





 bias effect

correction for the free energy of H+
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Technical details

 VASP program

 DFT with PAW method using GGA approximation with PW91, PBE and RPBE exchange-correlation terms

 

  3 layer                   (111) slab with 13.5 Å vacuum layer

 effect of solvent – bilayer of water molecules on the surface

  4 x 4 x 1 k-point Monkhorst-Pack mesh

 plane-wave basis with a cutoff energy of 400 eV

 Methfessel-Paxton smearing of order 2 with sigma value of 0.2 eV
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				OH* +		O* +		H* -

				e- + H+		2(e- + H+) 		e- + H+

		ΔEw,water		0.45 eV		1.43 eV		-0.38 eV

		ΔGw,water		0.80 eV		1.48 eV		-0.14 eV

		Uf		0.8 V		0.74 V		0.14 V

		ΔEw,water		0.74 eV		2.04 eV		-0.16 eV

		ΔGw,water		1.09 eV		2.09 eV		0.08 eV

		Uf		1.1 V		1.40 V		-0.08 V

		ΔEw,water		0.97 eV		2.34 eV		-0.01 eV

		ΔGw,water		1.32 eV		2.39 eV		0.23 eV

		Uf		1.32 V		1.20 V		-0.23 V

		ΔEw,water		1.05 eV		2.43 eV		0.10 eV

		ΔGw,water		1.40 eV		2.48 eV		0.34 eV

		Uf		1.4 V		1.24 V		-0.34 V



Table: The binding Enthalpies and Free energy changes at U=0 V and pH=0 for different absorbents with water on Pt surfaces with different concentration of Ni in a second layer (1/3 coverage )

Pt(111)

Pt3Ni(111)seg

PtNi(111)seg

PtNi3(111) seg

Oxygen Reduction Reaction: Energetics 
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(1)

(2)

(3)

Figure: Free-energy diagrams for ORR over Pt(111) surfaces with different Ni concentration in the second layer, for cell potentials U=0.80 V and U=1.23 V











Oxygen Reduction Reaction: Free energy diagrams 
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(1)

(2)

(3)







Oxygen Reduction Reaction: Free energy diagrams 

estimated catalytic activity:



confirmed experimentally:

Y. Liu et al, J. Phys. Chem. C, 116, 7848 (2012)

M. Karpenter, JACS, 134, 8535 (2012)  

 550 >  240   >  190    > 150 mV 
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Stability of the surfaces

Estimate of the shift in the electrochemical dissolution potential

PtNi3

Table: surface cohesive energy and the estimate of the shift in the electrochemical  dissolution potential relative to Pt(111)



 more susceptible to electrochemical dissolution of Pt monolayer

I. Matanovic et al. J. Phys. Chem. C, 115, 10640 (2011)
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Pt nanotubes

PtNT: Rolling-up Pt(111) sheet to form a tube



ac = 3.70- 3.85  Å 



 rolling vector:
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Pt nanotubes
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Pourbaix diagrams

Figure: Calculated surface Pourbaix diagrams for Pt nanotubes compared to a bulk Pourbaix diagrams (black dashed lines)
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Dissociative oxygen reduction reaction (ORR) mechanism

Figure: Free-energy diagrams for ORR over Pt(111) surfaces and SWPtNT for cell potentials U=0.80 V 







PtNTs, d ~ 1nm 

smaller ORR overpotential than Pt(111), up to 100 meV
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Pt nanotubes – ab initio MD simulations in water 

 Aim (1) characterize change of atomic and electronic structure on solvation 

          (2) structure of water around curved surfaces - water-surface interface models

~800 atom cell, 1300 MD steps in 24h, 480 processors, average ~1min/step



(6,6) and                                   (13,13) SWPtNT in water
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The ORR overpotential was found to decrease :

 shifts in the electrochemical dissolution potentials relative to Pt indicate that PtNi is the least susceptible to corrosion





 catalytic activity – modification in the electronic structure  induced by the specific subsurface composition 

I. Matanovic et al. J. Phys. Chem. C, 115, 10640 (2011)
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 ~0.5 nm nanotubes bind oxygen/hydroxyl more strongly than Pt(111) 

  ~1 nm nanotubes bind oxygen/hydroxyl comparable or weaker than Pt(111)

  reduced ORR overpotential – SWPtNT with a diameter > 1nm 

 control size/chirality – fine tuning of reactivity  → separation of metal nanotubes by geometric specification or size

 all studied nanotubes more susceptible to electrochemical dissolution than Pt(111) – potential corrosion problem 







Slide 20

Conclusions 

 

I. Matanovic et al. J. Phys. Chem. C, 116, 16499 (2012)

I. Matanovic et al, J. Electrochem. Soc, submitted
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Electrocatalysis

Nitrogen Reduction on Molybdenum Nitride
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Electro-reduction of nitrogen  



 ammonia can be obtained by electro-reduction of nitrogen

                                        N2 + 6e- + 6H+ → 2NH3

  protons are supplied from electro-oxidation of hydrogen or water 



 challenges: development, characterization and optimization of new electrocatalyists for ammonia electrosythesis and stable anhydrous proton conducting electrolytes

                                 

Marnellos et al. Science 282 (5386) 98-100

Holbrook and Ganley, US patent 7811442 (2010):

electrochemical synthesis of ammonia using high temperature proton conductors at atmospheric pressures
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Introduction  

Mo2N – high surface area films synthesized at LANL (polymer assisted deposition) 

            



 early transition metal nitrides - possible replacements for platinum-group metal catalysts 

 demonstrated catalytic activity for isomerisation, dehydrogenation, hydrogenation, water gas shift and amination reactions with competitive rates 

 Figure: Field emission scanning electron microscope (FESEM) images 
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Synergy of Inelastic Neutron Scattering and Computation:

Ammonia synthesis on novel material 

INS Experiments

observe frequencies for intermediates

Computational Studies

calculate frequencies for 

intermediates





extract maximum amount of

information from experiment:



Identities of intermediates, 

reaction path ?



determine model of surface

active sites (e.g. defects)

intermediates

reaction path
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 most useful for measurements requiring high sensitivity; for example, very dilute systems or molecules adsorbed on surfaces such as in catalysts



Inelastic neutron scattering experiment  

The Filter Difference Spectrometer (FDS) at LANL 

 used for molecular vibrational spectroscopy by inelastic neutron scattering
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vibrational spectra measured on FDS  



10 K

600 K

298 K

973 K

Figure: INS spectra of reactive species on MoN

 < 1g sample of catalyst

adsorb in-situ H2, then add N2



 heat stepwise to increasing T



 collect INS spectrum at each

step
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Ammonia synthesis on novel MoN material

 model the surface

 model the reaction on the surface – identify the intermediates

 model the INS spectra – compare with the experiment
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different surfaces – very different reactivity: (001) does NOT adsorb H2,  (101) and (111) + defects dissociates H2

molecular chemisorption (Kubas dihydrogen complex)

d(Mo-H2) = 1.86 Å 
d(H-H) = 0.85 Å (activated H-H bond)


reactivity of γ-Mo2N towards hydrogen 
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reactivity of γ-Mo2N towards hydrogen 







double differential cross section

 intensities calculated from DFT vibrational frequencies ωk and amplitudes Ck

incoherent cross section for atom i

momentum transfer

experimental value: Q = k – k0 

mean-square amplitude for atom i
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reactivity of γ-Mo2N towards hydrogen 
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10 K

600 K

298 K

973 K



INS spectra assignment 

Figure: INS spectra of reactive species on MoN

(10 K ) fcc H: 950, 1250 cm-1

            bridging H: ~ 600, ~800, 1140 cm-1 

            terminal H:  ~700, 1645 cm-1	       
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reactivity of γ-Mo2N: adsorption energies  



 DFT calculations used to estimate the free energy of each elementary step in ammonia sythesis
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reactivity of γ-Mo2N: energetics 

associative mechanism

dissociative mechanism
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INS spectra: (111) perfect surface 



 (111) perfect surface 

 (111) surface with defects 
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10 K

600 K

298 K

973 K



assignment 

Figure: INS spectra of reactive species on MoN



(973 K) NNHx species gone; mainly NHx species left. 

             ammonia phonon DOS states below 400 cm-1

             Mo-(NH3) complex, incl. (NH3) torsion at 120 cm-1 !!

             Peaks at ~ 600, 800, 900, 1150 and 1475 cm-1



(298 K) Similar to (10 K), but fewer H species, 

             new peaks at ~500, 700 and 1550cm-1:  NNH

(600 K) H species gone; peaks at 425, 510, 600, 660, 725,

             1070, (weak: 1240, 1550), 1900 cm-1: 

             mainly NNH and NNH2;  

             plus more strong peaks below 400 cm-1:

(10 K ) fcc H: 950, 1250 cm-1

            bridging H: ~ 600, ~800, 1140 cm-1 

            terminal H:  ~700, 1645 cm-1	       
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 different surfaces have very different reactivity towards N2, H2 and NNHx, NHx species 

 active sites: (111) defect sites with under-coordinated Mo

 we have investigated the catalytic mechanism and the active sites of newly synthesized material using inelastic scattering of neutrons and  DFT calculations

 synthesis of ammonia proceeds through the formation of both NNHx and NHx species 
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Gas Storage:

Quantum dynamics of hydrogen inside metal-organic frameworks
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Introduction

Metal organic frameworks (MOFs) - inorganic units connected with organic linkers















building blocks

unit cell
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MOF -5 - close to the U.S. DOE requriements for on board hydrogen storage

	7.1 wt % but at 40 bar and 77K

applications: gas storage and separation (H2, CH4, CO2), catalysis



Zn4O(1,4-benzenedicarboxylate)3

Introduction
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understanding the INS spectra of H2 in MOF-5 















Motivation

 design of materials with targeted properties, for instance stronger binding energies of H2

 wealth of information about excitations of translational and rotational motion of hydrogen  -  interactions of the guest molecule with the host

provide valuable insights in exploring the properties of these systems  at the molecular level - understanding guest-host interactions 
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calculation of the INS spectra 





 It is essential to have: 

i) quantitative description of the molecule-system potential 


ii) the methodology for accurate calculation of the various spectroscopic observable  


a computer code for coupled quantum calculations of the translational-rotational energy levels and wave functions of a polyatomic molecule which is confined in (or bounded to) a much heavier entity



Motivation
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Coupled translational rotational problem 

5D T-R Hamiltonian:

I. Matanović et al., J Chem. Phys. 131, 224308 (2009)



Basis in the angular coordinates – modified spherical harmonics
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5D T-R Hamiltonian:

Basis in the x,y,z coordinates – contraction scheme









I. Matanović et al., J Chem. Phys. 131, 224308 (2009)



Coupled translational rotational problem 
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 ab initio

MP2/def2-TZVP level

MOF-5: potential

 analytical form

J. L. Belof, A. C. Stern and B. Space, J. Phys. Chem. C. 2009, 113, 9116.

K. Sillar, A. Hofmann, J. Sauer, JACS 2009, 131, 4143
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 four binding sites: 4 α-, 4 β-, 12 γ-sites per Zn4O unit 

MOF-5: binding energies

				analytical
PES		ab initio
PES

		α - site:		 -66.6 meV 		-82.9 meV

		γ - site:		-65.5 meV		-53.9 meV

		β - site:		-53.8 meV		-47.7 meV

		δ - site:		-37.8 meV		-52.9 meV





exp:
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α - site

 MOF-5: rotational potential

γ - site

H2-OMOF5 distance: 3.7 Å

H2-OMOF5 distance: 3.6 Å

H2-ZnMOF5 distance: 3.9 Å

H2-ZnMOF5 distance: 4.1 Å





 analytical PES

 ab initio PES
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MOF-5: translational-rotational potential 

Figure. 3D isosurfaces at -62, -56 and -44 meV for the 5D analytical PES of H2 in MOF-5

Figure. 2D cut through the potential connecting α- and one of the γ-sites, isosurfaces shown at every 6 meV starting from -62 meV

 analytical PES
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INS spectra: Translation-rotational problem



1 H2 moving in α- and γ- sites

1 H2 moving in α-site with γ-sites occupied

translational

pure rotational and

translational

rotational

tranlation-

rotational

torsional mode of linkers
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Conclusions

 small barrier  between α- and three surrounding γ-sites in MOF-5 on analytical PES by Belof et al.

  low-lying translationally excited states extensively delocalized 



 comparison with INS spectra implies that the actual degree of localization in the α-site is greater than indicated by the PES 



 INS spectra assigned, intensities needed for more extensive assignment – M. Xu et al Phys. Rev. B 84, 195445(2011)



  PESs that accounts for bulk properties (adsorption isotherms) might not correctly describe the interactions with the host on the molecular level – further improvements needed to obtain spectroscopic observables
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water layer 1

2/3 coverage

water layer 2

2/3 coverage

OH + water

1/3 coverage 

O + water

1/3 coverage

H + water

1/3 coverage

Different states of the metal surface
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translation- rotation problem

		n		ΔE/ meV		type of excitation

		0		0.0		

		1		5.3 (2)		translational

		3		5.6		translational

		4		6.9 (2)		translational

		6		7.5		translational

		7		9.6 (2)		translational

		9		9.9		translational

		10		11.5(2)		translational

		11		12.5 (3)		translational

		16		12.91		rotational, j=1

		17		12.94		rotational, j=1

		35		16.7		rotational, j=1

























lower three translational excitations

 rotational problem in

separate wells

 translation - rotational problem

(ZPE=218 cm-1 / 2.6 kJ mol-1 ) 

		n		alpha 
/meV		gamma
/meV

		0		0.0		0.0

		1		10.8		7.5

		2		13.3		20.2

		3		22.6		21.1

		4		40.1		42.0

		5		40.1		42.4

		6		46.8		43.2

		7		48.6		52.3

		8		51.9		52.3
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